Project

General

Profile

Refereed Publications » History » Version 30

Rogers, Chris, 12 March 2020 11:01

1 5 Long, Kenneth
h1. Refereed publications
2 1 Rogers, Chris
3 15 Long, Kenneth
{{>toc}}
4 10 Long, Kenneth
5 5 Long, Kenneth
The MICE publications in refereed journals are presented below.
6 3 Rogers, Chris
7
---
8 2 Rogers, Chris
9 29 Rogers, Chris
h2. Demonstration of cooling by the Muon Ionization Cooling Experiment
10 1 Rogers, Chris
11 30 Rogers, Chris
*"Published in: Nature 578, 53–59 (2020)":https://www.nature.com/articles/s41586-020-1958-9*
12
["DOI":https://doi.org/10.1038/s41586-020-1958-9 ; "arXiv":https://arxiv.org/abs/1907.08562 ; "RAL Preprint: RAL-P-2019-003":http://purl.org/net/epubs/work/43475249]
13
[[mice:For_the_public|Press Release and articles]]
14
15
16 29 Rogers, Chris
*Abstract*
17
18
bq. The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such ‘tertiary’ beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton–antilepton collisions at extremely high energies and provide well characterized neutrino beams. Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness. Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect. The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced footprint.
19
20 28 Rogers, Chris
*[[EmitEvolv|Details]]
21 1 Rogers, Chris
22 29 Rogers, Chris
---
23 28 Rogers, Chris
24 9 Long, Kenneth
h2. First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment
25
26 10 Long, Kenneth
*Published in: "Eur. Phys. J. C (2019) 79:257":https://epjc.epj.org/articles/epjc/abs/2019/03/10052_2019_Article_6674/10052_2019_Article_6674.html*
27 13 Long, Kenneth
["DOI":https://doi.org/10.1140/epjc/s10052-019-6674-y ; "arXiv":https://arxiv.org/abs/1810.13224 ; "RAL Preprint: RAL-P-2018-005":https://epubs.stfc.ac.uk/work/39821552]
28 7 Long, Kenneth
29 14 Long, Kenneth
*Abstract*
30 7 Long, Kenneth
31
bq. The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment.  A pure muon ensemble is selected using a particleidentification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions in the upstream tracking detector and reports the first particleby-particle measurement of the emittance of theMICE Muon Beam as a function of muon-beam momentum.  
32
33 19 Long, Kenneth
*Figures:*
34
35 20 Long, Kenneth
"Fig. 1":https://micewww.pp.rl.ac.uk/attachments/download/10885/fig1.pdf "Fig. 2":https://micewww.pp.rl.ac.uk/attachments/download/10890/fig2.pdf "Fig. 3":https://micewww.pp.rl.ac.uk/attachments/download/10601/fig3.pdf "Fig. 4":https://micewww.pp.rl.ac.uk/attachments/download/10900/fig4.pdf "Fig. 5":https://micewww.pp.rl.ac.uk/attachments/download/10903/fig5.pdf "Fig. 6":https://micewww.pp.rl.ac.uk/attachments/download/10906/fig6.pdf "Fig. 7":https://micewww.pp.rl.ac.uk/attachments/download/10910/fig7.pdf "Fig. 8":https://micewww.pp.rl.ac.uk/attachments/download/10913/fig8.pdf "Fig. 9":https://micewww.pp.rl.ac.uk/attachments/download/10918/fig9.pdf
36
37
*Tables:*
38
39
"Table 1":https://micewww.pp.rl.ac.uk/attachments/download/10924/table1.pdf "Table 2":https://micewww.pp.rl.ac.uk/attachments/download/10927/table2.pdf "Table 3":https://micewww.pp.rl.ac.uk/attachments/download/10932/table3.pdf
40 19 Long, Kenneth
41 21 Long, Kenneth
*[[Direct measurement of emittance using the MICE scintillating fibre tracker|Details]]*
42 17 Long, Kenneth
43 16 Long, Kenneth
---
44 1 Rogers, Chris
45 23 Long, Kenneth
h2. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling
46 6 Long, Kenneth
47
*Published in: "Physical Review Accelerators and Beams 20, 063501, 19 June 2017":https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.063501*
48
["DOI":https://doi.org/10.1103/PhysRevAccelBeams.20.063501 ; "arXiv":http://arxiv.org/abs/1701.06403 ; "RAL Preprint: RAL-P-2017-002":http://purl.org/net/epubs/work/31470969]
49
50
*Abstract:* 
51
52 26 Long, Kenneth
bq. Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.
53 6 Long, Kenneth
54
*Figures:*
55
56
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/8195/Cooling-demo-labels.pdf "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/8190/shutter.pdf "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/8198/beta_phase_adv_final.pdf "Fig. 4":http://micewww.pp.rl.ac.uk/attachments/8216/emit_phase_adv_final.pdf "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/8224/bz_total_end_final.pdf "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/8211/beta_total_final.pdf "Fig. 7a":http://micewww.pp.rl.ac.uk/attachments/8243/energy_140_final.pdf "Fig. 7b":http://micewww.pp.rl.ac.uk/attachments/8247/energy_200_final.pdf "Fig. 7c":http://micewww.pp.rl.ac.uk/attachments/8252/energy_240_final.pdf "Fig. 8a":http://micewww.pp.rl.ac.uk/attachments/8229/emit_140_both_final.pdf "Fig. 8b":http://micewww.pp.rl.ac.uk/attachments/8223/emit_200_final.pdf "Fig. 8c":http://micewww.pp.rl.ac.uk/attachments/8231/emit_240_final.pdf "Fig. 9":http://micewww.pp.rl.ac.uk/attachments/download/9051/transmission_all_final.pdf "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/download/9052/emit_compa_all_final.pdf
57
58 1 Rogers, Chris
*Tables:*
59
60 6 Long, Kenneth
"Table 1":http://micewww.pp.rl.ac.uk/attachments/8257/table_1.pdf "Table 2":http://micewww.pp.rl.ac.uk/attachments/8250/table_2.pdf "Table 3":http://micewww.pp.rl.ac.uk/attachments/8263/table_3.pdf "Table 4":http://micewww.pp.rl.ac.uk/attachments/8266/table_4.pdf "Table 5":http://micewww.pp.rl.ac.uk/attachments/8268/table_5.pdf
61 18 Long, Kenneth
62 22 Long, Kenneth
*[[Design and expected performance of the MICE Demonstration of Ionization Cooling|Details]]*
63 6 Long, Kenneth
64
---
65
66 4 Rogers, Chris
h2. Pion contamination in the MICE muon beam
67 1 Rogers, Chris
68 22 Long, Kenneth
*Published in:  "2016 JINST 11 P03001":http://iopscience.iop.org/article/10.1088/1748-0221/11/03/P03001*
69 23 Long, Kenneth
["DOI":http://dx.doi.org/10.1088/1748-0221/11/03/P03001 ; "arXiv":http://arxiv.org/abs/1511.00556 ; "RAL Preprint: RAL-P-2015-009":https://epubs.stfc.ac.uk/work/30453617]
70 4 Rogers, Chris
71 1 Rogers, Chris
*Abstract*
72 4 Rogers, Chris
73 22 Long, Kenneth
bq. The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility.  The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~ 1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry.  The upper limit for the pion contamination measured in this paper is f_{\pi} < 1.4% at 90% C.L., including systematic uncertainties.  Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.
74 4 Rogers, Chris
75
*Figures:*
76
77
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/5582/Cooling-demo-labels.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/5581/beamline_schematic__step1.pdf, "Fig. 3a":http://micewww.pp.rl.ac.uk/attachments/5585/muon_run.pdf, "Fig. 3b":http://micewww.pp.rl.ac.uk/attachments/5577/p_222.pdf, "Fig. 4a":http://micewww.pp.rl.ac.uk/attachments/5579/tof_data_MC.pdf, "Fig. 4b":http://micewww.pp.rl.ac.uk/attachments/5578/P_plot.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/5580/tof_pair.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/5583/KL_Data.pdf, "Fig. 7":http://micewww.pp.rl.ac.uk/attachments/5584/KL_MC.pdf
78
79
*Tables:*
80
81
"Table 1":http://micewww.pp.rl.ac.uk/attachments/5597/runTable.tex, "Table 2":http://micewww.pp.rl.ac.uk/attachments/5598/beam_settingsTable.tex, "Table 3":http://micewww.pp.rl.ac.uk/attachments/5600/systematicsTable.tex
82 22 Long, Kenneth
83
*"Details":http://micewww.pp.rl.ac.uk/projects/analysis/wiki/Step1_pion_contamination*
84 4 Rogers, Chris
85
---
86 1 Rogers, Chris
87 4 Rogers, Chris
h2. Electron-Muon Ranger: performance in the MICE Muon Beam
88
89 25 Long, Kenneth
*Published in: "2015 JINST 10 P12012":http://iopscience.iop.org/article/10.1088/1748-0221/10/12/P12012*
90
["DOI":http://dx.doi.org/10.1088/1748-0221/10/12/P12012 ; "arXiv":http://arxiv.org/abs/1510.08306 ; "RAL Preprint: RAL-P-2015-008":http://purl.org/net/epubs/work/24425870]
91 1 Rogers, Chris
92 25 Long, Kenneth
93 1 Rogers, Chris
*Abstract*
94 4 Rogers, Chris
95 25 Long, Kenneth
bq. The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100--280 MeV/c.
96 4 Rogers, Chris
97
*Figures:*
98
99
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/4915/Figure1.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/4918/Figure2.pdf, "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/4921/Figure3.pdf, "Fig. 4":http://micewww.pp.rl.ac.uk/attachments/4924/Figure4.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/4927/Figure5.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/4930/Figure6.pdf, "Fig. 7":http://micewww.pp.rl.ac.uk/attachments/4933/Figure7.pdf, "Fig. 8":http://micewww.pp.rl.ac.uk/attachments/4937/Figure8.pdf, "Fig. 9":http://micewww.pp.rl.ac.uk/attachments/4940/Figure9.pdf, "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/4946/Figure10.pdf, "Fig. 11":http://micewww.pp.rl.ac.uk/attachments/4949/Figure11.pdf, "Fig. 12":http://micewww.pp.rl.ac.uk/attachments/4943/Figure12.pdf, "Fig. 13":http://micewww.pp.rl.ac.uk/attachments/4915/4955/Figure13.pdf, "Fig. 14":http://micewww.pp.rl.ac.uk/attachments/4958/Figure14.pdf, "Fig. 15":http://micewww.pp.rl.ac.uk/attachments/4952/Figure15.pdf, "Fig. 16":http://micewww.pp.rl.ac.uk/attachments/4964/Figure16.pdf, "Fig. 17":http://micewww.pp.rl.ac.uk/attachments/4967/Figure17.pdf, "Fig. 18":http://micewww.pp.rl.ac.uk/attachments/4961/Figure18.pdf, "Fig. 19":http://micewww.pp.rl.ac.uk/attachments/4969/Figure19.pdf
100 25 Long, Kenneth
101
*"Details":http://micewww.pp.rl.ac.uk/projects/analysis/wiki/Step1_emr_paper*
102 4 Rogers, Chris
103
---
104
105
h2. Characterisation of the muon beams for the Muon Ionization Cooling Experiment
106 1 Rogers, Chris
107 26 Long, Kenneth
*Published in "European Journal of Physics C, Volume 73, Number 10 (2013)":http://rd.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2582-8*
108
["DOI":http://dx.doi.org/10.1140/epjc/s10052-013-2582-8 ; "arXiv":http://arxiv.org/abs/1306.1509 ; "INSPIRE HEP":http://inspirehep.net/record/1258073?ln=en]
109 1 Rogers, Chris
110
*Abstract:* 
111 4 Rogers, Chris
112 26 Long, Kenneth
bq. A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \pi mm-rad horizontally and 0.6--1.0 \pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. 
113 4 Rogers, Chris
114
*Figures:*
115
116
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/3259/figure1-eps-converted-to.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/3260/figure2-eps-converted-to.pdf, "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/3261/figure3-eps-converted-to.pdf, "Fig. 4a":http://micewww.pp.rl.ac.uk/attachments/3262/figure4a-eps-converted-to.pdf, "Fig. 4b":http://micewww.pp.rl.ac.uk/attachments/3264/figure4b-eps-converted-to.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/3255/figure5-eps-converted-to.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/3256/figure6-eps-converted-to.pdf, "Fig 7a--f":http://micewww.pp.rl.ac.uk/attachments/3257/figure7a_f-eps-converted-to.pdf, "Fig. 8a--c":http://micewww.pp.rl.ac.uk/attachments/3258/figure8a_c-eps-converted-to.pdf, "Fig. 9a":http://micewww.pp.rl.ac.uk/attachments/3263/figure9a-eps-converted-to.pdf, "Fig. 9b":http://micewww.pp.rl.ac.uk/attachments/3277/figure9b-eps-converted-to.pdf, "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/3266/figure10-eps-converted-to.pdf, "Fig. 11":http://micewww.pp.rl.ac.uk/attachments/3267/figure11-eps-converted-to.pdf, "Fig. 12":http://micewww.pp.rl.ac.uk/attachments/3268/figure12-eps-converted-to.pdf, "Fig. 13":http://micewww.pp.rl.ac.uk/attachments/3269/figure13-eps-converted-to.pdf, "Fig. 14":http://micewww.pp.rl.ac.uk/attachments/3270/figure14-eps-converted-to.pdf, "Fig. 15":http://micewww.pp.rl.ac.uk/attachments/3278/figure15-eps-converted-to.pdf
117
118
*Tables:*
119
120
"Table 1":http://micewww.pp.rl.ac.uk/attachments/3275/momentumTable.tex, "Table 2":http://micewww.pp.rl.ac.uk/attachments/3273/errorTable.tex, "Table 3":http://micewww.pp.rl.ac.uk/attachments/3274/summaryTable_v2.tex, "Table 4":http://micewww.pp.rl.ac.uk/attachments/3271/dispersionTable.tex
121 26 Long, Kenneth
122
*[[10-1140-epjc-s10052-013-2582-8|Details]]*
123 4 Rogers, Chris
124
---
125
126
h2. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment
127
128 27 Long, Kenneth
*Published in "Journal of Instrumentation, Volume 7, Number 5 (2012)":http://iopscience.iop.org/1748-0221/7/05/P05009*
129
["DOI":http://dx.doi.org/10.1088/1748-0221/7/05/P05009 ; "arXiv":http://arxiv.org/abs/1203.4089 ; "INSPIRE HEP":http://inspirehep.net/record/1094170?ln=en]
130 4 Rogers, Chris
131
*Abstract:*
132
133
bq. The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam. 
134
135 27 Long, Kenneth
*[[10-1088-1748-0221-7-5-p05009|Details]]*