Project

General

Profile

Refereed Publications » History » Version 28

Rogers, Chris, 12 March 2020 10:52

1 5 Long, Kenneth
h1. Refereed publications
2 1 Rogers, Chris
3 15 Long, Kenneth
{{>toc}}
4 10 Long, Kenneth
5 5 Long, Kenneth
The MICE publications in refereed journals are presented below.
6 3 Rogers, Chris
7
---
8 2 Rogers, Chris
9 28 Rogers, Chris
h2. 
10
11
*[[EmitEvolv|Details]]
12
13
14 9 Long, Kenneth
h2. First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment
15
16 10 Long, Kenneth
*Published in: "Eur. Phys. J. C (2019) 79:257":https://epjc.epj.org/articles/epjc/abs/2019/03/10052_2019_Article_6674/10052_2019_Article_6674.html*
17 13 Long, Kenneth
["DOI":https://doi.org/10.1140/epjc/s10052-019-6674-y ; "arXiv":https://arxiv.org/abs/1810.13224 ; "RAL Preprint: RAL-P-2018-005":https://epubs.stfc.ac.uk/work/39821552]
18 7 Long, Kenneth
19 14 Long, Kenneth
*Abstract*
20 7 Long, Kenneth
21
bq. The Muon Ionization Cooling Experiment (MICE) collaboration seeks to demonstrate the feasibility of ionization cooling, the technique by which it is proposed to cool the muon beam at a future neutrino factory or muon collider. The emittance is measured from an ensemble of muons assembled from those that pass through the experiment.  A pure muon ensemble is selected using a particleidentification system that can reject efficiently both pions and electrons. The position and momentum of each muon are measured using a high-precision scintillating-fibre tracker in a 4T solenoidal magnetic field. This paper presents the techniques used to reconstruct the phase-space distributions in the upstream tracking detector and reports the first particleby-particle measurement of the emittance of theMICE Muon Beam as a function of muon-beam momentum.  
22
23 19 Long, Kenneth
*Figures:*
24
25 20 Long, Kenneth
"Fig. 1":https://micewww.pp.rl.ac.uk/attachments/download/10885/fig1.pdf "Fig. 2":https://micewww.pp.rl.ac.uk/attachments/download/10890/fig2.pdf "Fig. 3":https://micewww.pp.rl.ac.uk/attachments/download/10601/fig3.pdf "Fig. 4":https://micewww.pp.rl.ac.uk/attachments/download/10900/fig4.pdf "Fig. 5":https://micewww.pp.rl.ac.uk/attachments/download/10903/fig5.pdf "Fig. 6":https://micewww.pp.rl.ac.uk/attachments/download/10906/fig6.pdf "Fig. 7":https://micewww.pp.rl.ac.uk/attachments/download/10910/fig7.pdf "Fig. 8":https://micewww.pp.rl.ac.uk/attachments/download/10913/fig8.pdf "Fig. 9":https://micewww.pp.rl.ac.uk/attachments/download/10918/fig9.pdf
26
27
*Tables:*
28
29
"Table 1":https://micewww.pp.rl.ac.uk/attachments/download/10924/table1.pdf "Table 2":https://micewww.pp.rl.ac.uk/attachments/download/10927/table2.pdf "Table 3":https://micewww.pp.rl.ac.uk/attachments/download/10932/table3.pdf
30 19 Long, Kenneth
31 21 Long, Kenneth
*[[Direct measurement of emittance using the MICE scintillating fibre tracker|Details]]*
32 17 Long, Kenneth
33 16 Long, Kenneth
---
34 1 Rogers, Chris
35 23 Long, Kenneth
h2. Lattice design and expected performance of the Muon Ionization Cooling Experiment demonstration of ionization cooling
36 6 Long, Kenneth
37
*Published in: "Physical Review Accelerators and Beams 20, 063501, 19 June 2017":https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.063501*
38
["DOI":https://doi.org/10.1103/PhysRevAccelBeams.20.063501 ; "arXiv":http://arxiv.org/abs/1701.06403 ; "RAL Preprint: RAL-P-2017-002":http://purl.org/net/epubs/work/31470969]
39
40
*Abstract:* 
41
42 26 Long, Kenneth
bq. Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at a neutrino factory and to provide lepton-antilepton collisions at energies of up to several TeV at a muon collider. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization-cooling channel, the muon beam passes through a material in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised experiment can deliver a demonstration of ionization cooling. The design of the cooling demonstration experiment will be described together with its predicted cooling performance.
43 6 Long, Kenneth
44
*Figures:*
45
46
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/8195/Cooling-demo-labels.pdf "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/8190/shutter.pdf "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/8198/beta_phase_adv_final.pdf "Fig. 4":http://micewww.pp.rl.ac.uk/attachments/8216/emit_phase_adv_final.pdf "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/8224/bz_total_end_final.pdf "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/8211/beta_total_final.pdf "Fig. 7a":http://micewww.pp.rl.ac.uk/attachments/8243/energy_140_final.pdf "Fig. 7b":http://micewww.pp.rl.ac.uk/attachments/8247/energy_200_final.pdf "Fig. 7c":http://micewww.pp.rl.ac.uk/attachments/8252/energy_240_final.pdf "Fig. 8a":http://micewww.pp.rl.ac.uk/attachments/8229/emit_140_both_final.pdf "Fig. 8b":http://micewww.pp.rl.ac.uk/attachments/8223/emit_200_final.pdf "Fig. 8c":http://micewww.pp.rl.ac.uk/attachments/8231/emit_240_final.pdf "Fig. 9":http://micewww.pp.rl.ac.uk/attachments/download/9051/transmission_all_final.pdf "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/download/9052/emit_compa_all_final.pdf
47
48 1 Rogers, Chris
*Tables:*
49
50 6 Long, Kenneth
"Table 1":http://micewww.pp.rl.ac.uk/attachments/8257/table_1.pdf "Table 2":http://micewww.pp.rl.ac.uk/attachments/8250/table_2.pdf "Table 3":http://micewww.pp.rl.ac.uk/attachments/8263/table_3.pdf "Table 4":http://micewww.pp.rl.ac.uk/attachments/8266/table_4.pdf "Table 5":http://micewww.pp.rl.ac.uk/attachments/8268/table_5.pdf
51 18 Long, Kenneth
52 22 Long, Kenneth
*[[Design and expected performance of the MICE Demonstration of Ionization Cooling|Details]]*
53 6 Long, Kenneth
54
---
55
56 4 Rogers, Chris
h2. Pion contamination in the MICE muon beam
57 1 Rogers, Chris
58 22 Long, Kenneth
*Published in:  "2016 JINST 11 P03001":http://iopscience.iop.org/article/10.1088/1748-0221/11/03/P03001*
59 23 Long, Kenneth
["DOI":http://dx.doi.org/10.1088/1748-0221/11/03/P03001 ; "arXiv":http://arxiv.org/abs/1511.00556 ; "RAL Preprint: RAL-P-2015-009":https://epubs.stfc.ac.uk/work/30453617]
60 4 Rogers, Chris
61 1 Rogers, Chris
*Abstract*
62 4 Rogers, Chris
63 22 Long, Kenneth
bq. The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility.  The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~ 1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry.  The upper limit for the pion contamination measured in this paper is f_{\pi} < 1.4% at 90% C.L., including systematic uncertainties.  Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.
64 4 Rogers, Chris
65
*Figures:*
66
67
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/5582/Cooling-demo-labels.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/5581/beamline_schematic__step1.pdf, "Fig. 3a":http://micewww.pp.rl.ac.uk/attachments/5585/muon_run.pdf, "Fig. 3b":http://micewww.pp.rl.ac.uk/attachments/5577/p_222.pdf, "Fig. 4a":http://micewww.pp.rl.ac.uk/attachments/5579/tof_data_MC.pdf, "Fig. 4b":http://micewww.pp.rl.ac.uk/attachments/5578/P_plot.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/5580/tof_pair.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/5583/KL_Data.pdf, "Fig. 7":http://micewww.pp.rl.ac.uk/attachments/5584/KL_MC.pdf
68
69
*Tables:*
70
71
"Table 1":http://micewww.pp.rl.ac.uk/attachments/5597/runTable.tex, "Table 2":http://micewww.pp.rl.ac.uk/attachments/5598/beam_settingsTable.tex, "Table 3":http://micewww.pp.rl.ac.uk/attachments/5600/systematicsTable.tex
72 22 Long, Kenneth
73
*"Details":http://micewww.pp.rl.ac.uk/projects/analysis/wiki/Step1_pion_contamination*
74 4 Rogers, Chris
75
---
76 1 Rogers, Chris
77 4 Rogers, Chris
h2. Electron-Muon Ranger: performance in the MICE Muon Beam
78
79 25 Long, Kenneth
*Published in: "2015 JINST 10 P12012":http://iopscience.iop.org/article/10.1088/1748-0221/10/12/P12012*
80
["DOI":http://dx.doi.org/10.1088/1748-0221/10/12/P12012 ; "arXiv":http://arxiv.org/abs/1510.08306 ; "RAL Preprint: RAL-P-2015-008":http://purl.org/net/epubs/work/24425870]
81 1 Rogers, Chris
82 25 Long, Kenneth
83 1 Rogers, Chris
*Abstract*
84 4 Rogers, Chris
85 25 Long, Kenneth
bq. The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100--280 MeV/c.
86 4 Rogers, Chris
87
*Figures:*
88
89
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/4915/Figure1.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/4918/Figure2.pdf, "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/4921/Figure3.pdf, "Fig. 4":http://micewww.pp.rl.ac.uk/attachments/4924/Figure4.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/4927/Figure5.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/4930/Figure6.pdf, "Fig. 7":http://micewww.pp.rl.ac.uk/attachments/4933/Figure7.pdf, "Fig. 8":http://micewww.pp.rl.ac.uk/attachments/4937/Figure8.pdf, "Fig. 9":http://micewww.pp.rl.ac.uk/attachments/4940/Figure9.pdf, "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/4946/Figure10.pdf, "Fig. 11":http://micewww.pp.rl.ac.uk/attachments/4949/Figure11.pdf, "Fig. 12":http://micewww.pp.rl.ac.uk/attachments/4943/Figure12.pdf, "Fig. 13":http://micewww.pp.rl.ac.uk/attachments/4915/4955/Figure13.pdf, "Fig. 14":http://micewww.pp.rl.ac.uk/attachments/4958/Figure14.pdf, "Fig. 15":http://micewww.pp.rl.ac.uk/attachments/4952/Figure15.pdf, "Fig. 16":http://micewww.pp.rl.ac.uk/attachments/4964/Figure16.pdf, "Fig. 17":http://micewww.pp.rl.ac.uk/attachments/4967/Figure17.pdf, "Fig. 18":http://micewww.pp.rl.ac.uk/attachments/4961/Figure18.pdf, "Fig. 19":http://micewww.pp.rl.ac.uk/attachments/4969/Figure19.pdf
90 25 Long, Kenneth
91
*"Details":http://micewww.pp.rl.ac.uk/projects/analysis/wiki/Step1_emr_paper*
92 4 Rogers, Chris
93
---
94
95
h2. Characterisation of the muon beams for the Muon Ionization Cooling Experiment
96 1 Rogers, Chris
97 26 Long, Kenneth
*Published in "European Journal of Physics C, Volume 73, Number 10 (2013)":http://rd.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2582-8*
98
["DOI":http://dx.doi.org/10.1140/epjc/s10052-013-2582-8 ; "arXiv":http://arxiv.org/abs/1306.1509 ; "INSPIRE HEP":http://inspirehep.net/record/1258073?ln=en]
99 1 Rogers, Chris
100
*Abstract:* 
101 4 Rogers, Chris
102 26 Long, Kenneth
bq. A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \pi mm-rad horizontally and 0.6--1.0 \pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. 
103 4 Rogers, Chris
104
*Figures:*
105
106
"Fig. 1":http://micewww.pp.rl.ac.uk/attachments/3259/figure1-eps-converted-to.pdf, "Fig. 2":http://micewww.pp.rl.ac.uk/attachments/3260/figure2-eps-converted-to.pdf, "Fig. 3":http://micewww.pp.rl.ac.uk/attachments/3261/figure3-eps-converted-to.pdf, "Fig. 4a":http://micewww.pp.rl.ac.uk/attachments/3262/figure4a-eps-converted-to.pdf, "Fig. 4b":http://micewww.pp.rl.ac.uk/attachments/3264/figure4b-eps-converted-to.pdf, "Fig. 5":http://micewww.pp.rl.ac.uk/attachments/3255/figure5-eps-converted-to.pdf, "Fig. 6":http://micewww.pp.rl.ac.uk/attachments/3256/figure6-eps-converted-to.pdf, "Fig 7a--f":http://micewww.pp.rl.ac.uk/attachments/3257/figure7a_f-eps-converted-to.pdf, "Fig. 8a--c":http://micewww.pp.rl.ac.uk/attachments/3258/figure8a_c-eps-converted-to.pdf, "Fig. 9a":http://micewww.pp.rl.ac.uk/attachments/3263/figure9a-eps-converted-to.pdf, "Fig. 9b":http://micewww.pp.rl.ac.uk/attachments/3277/figure9b-eps-converted-to.pdf, "Fig. 10":http://micewww.pp.rl.ac.uk/attachments/3266/figure10-eps-converted-to.pdf, "Fig. 11":http://micewww.pp.rl.ac.uk/attachments/3267/figure11-eps-converted-to.pdf, "Fig. 12":http://micewww.pp.rl.ac.uk/attachments/3268/figure12-eps-converted-to.pdf, "Fig. 13":http://micewww.pp.rl.ac.uk/attachments/3269/figure13-eps-converted-to.pdf, "Fig. 14":http://micewww.pp.rl.ac.uk/attachments/3270/figure14-eps-converted-to.pdf, "Fig. 15":http://micewww.pp.rl.ac.uk/attachments/3278/figure15-eps-converted-to.pdf
107
108
*Tables:*
109
110
"Table 1":http://micewww.pp.rl.ac.uk/attachments/3275/momentumTable.tex, "Table 2":http://micewww.pp.rl.ac.uk/attachments/3273/errorTable.tex, "Table 3":http://micewww.pp.rl.ac.uk/attachments/3274/summaryTable_v2.tex, "Table 4":http://micewww.pp.rl.ac.uk/attachments/3271/dispersionTable.tex
111 26 Long, Kenneth
112
*[[10-1140-epjc-s10052-013-2582-8|Details]]*
113 4 Rogers, Chris
114
---
115
116
h2. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment
117
118 27 Long, Kenneth
*Published in "Journal of Instrumentation, Volume 7, Number 5 (2012)":http://iopscience.iop.org/1748-0221/7/05/P05009*
119
["DOI":http://dx.doi.org/10.1088/1748-0221/7/05/P05009 ; "arXiv":http://arxiv.org/abs/1203.4089 ; "INSPIRE HEP":http://inspirehep.net/record/1094170?ln=en]
120 4 Rogers, Chris
121
*Abstract:*
122
123
bq. The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam. 
124
125 27 Long, Kenneth
*[[10-1088-1748-0221-7-5-p05009|Details]]*