Project

General

Profile

Actions

Demonstration of Reverse Emittance Exchange in MICE (Preliminary)

Abstract


Published in: Forthcoming
arXiv: Forthcoming
RAL Preprint: Forthcoming
DOI: Forthcoming

BibTeX
References
Source


Presented at NuFact18:
  • Yagmur Torun's presentation:
    • Presentation: attachment:forthcoming
  • Paul Soler's presentation:
    • Presentation: attachment:forthcoming

x vs pz (Data)

hist2d_data_us_x_pz_2.png

x_p_us_hist_data_1.png

The distribution of pz vs x upstream of the absorber

hist2d_data_ds_x_pz_2.png

x_p_ds_hist_data_1.png

The distribution of pz vs x downstream of the absorber. The downstream muon sample has a more spread-out longitudinal momentum as a result of reverse emittance exchange.


x vs pz and density versus average beam radius (MC recon)

hist2d_mc_us_x_pz_2.png

x_p_us_hist_mc_recon_1.png

The distribution of pz vs x upstream of the absorber

hist2d_mc_ds_x_pz_2.png

x_p_ds_hist_mc_recon_1.png

The distribution of pz vs x downstream of the absorber. The downstream muon sample has a more spread-out longitudinal momentum as a result of reverse emittance exchange.

density_vs_volume_mc_recon_long_1.png

density_vs_volume_mc_recon_long_2.png

density_vs_volume_mc_recon_long_3.png

The distribution of density of each phase-space contour, as measured with the kernel density estimation technique vs the contour volume, as measured with the kernel density estimation and the Monte Carlo volume calculation techniques. The coordinate in the longitudinal direction is energy (E- Emean, energy with respect to mean energy) of each muon (momentum coordinates used in computing the energy are px/pmean, py/pmean, pz/pmean). Longitudinal heating (the expected effect from reverse emittance exchange) is demonstrated as the decrease in density at low average beam radius values.

density_vs_volume_mc_recon_trans_1.png

density_vs_volume_mc_recon_trans_2.png

density_vs_volume_mc_recon_trans_3.png

The distribution of density of each phase-space contour, as measured with the kernel density estimation technique vs the fourth-root of contour volume (average beam radius in the four-dimensional transverse direction), as measured with the kernel density estimation and the Monte Carlo volume calculation techniques. The coordinates are the transverse coordinates x, px/pmean, y, py/pmean of each muon. Transverse cooling (the expected effect from reverse emittance exchange) is demonstrated as the increase in density at low average beam radius values.


us_e.png
ds_e.png

The energy (E - Emean) distributions upstream (top) and downstream (bottom) of the wedge. The energy coordinate is the same as the one used in generating the longitudinal density-vs-volume plots above
----

Following a discussion, it was recommended not to scale the momentum coordinates to the total energy and to avoid subtracting from the average energy. The energy distribution and the new density vs volume plots are produced based on a direct evaluation of the KDE over the momentum coordinates, px, py, and pz (without scaling to total momentum) and the energy coordinate is no longer E - <E> and is simply E of each muon:

density_vs_volume_mc_recon_long_1_v2.png

density_vs_volume_mc_recon_long_2_v2.png

density_vs_volume_mc_recon_long_3_v2.png

density_vs_volume_mc_recon_trans_1_v2.png

density_vs_volume_mc_recon_trans_2_v2.png

density_vs_volume_mc_recon_trans_3_v2.png

us_e_v2.png
ds_e_v2.png

Updated by Mohayai, Tanaz Angelina about 5 years ago · 14 revisions