Towards a symmetric momentum distribution in the Muon Ionization Cooling Experiment

Ole Martin Hansen

December 3, 2012

Abstract

The Muon Ionization Cooling Experiment (MICE) is under development at Rutherford Appleton Labratory (UK). It's a proof-of-principle experiment for ionization cooling, which is a prerequisite for a future Neutrino Factory(NF) or a Muon Collider. The muon beam will have a symmetrical momentum distribution in the cooling channel of the NF[1]. In the MICE beamline pions are captured by a quadrupole triplet, pion momentum is selected by dipole 1 (D1) before the pions decay to muons in the decay solenoid. After the decay solenoid the muon beam momentum is selected by dipole 2 (D2), the beam focused in two quadrupole triplets and finally caracterized by a set of detectors. By doing a so-called D1-scan, where the optics parameters are scaled according to the pion momentum, from 238-450 MeV/c the distribution is changed. In this paper simulation results from G4Beamline[2] and real data from MICE are presented and compared.

[1] Feasibility Study-II of a Muon-Based Neutrino Source, ed., S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo, BNL-52623 (2001)

[2] T. J. Roberts et al. G4BeamLine 2.06 (2010) http://g4beamline.muonsinc.com/

- Presentation Type Poster

- Main and Sub-Classification of Abstracts 01 Circular and Linear Colliders - A09 Muon Accelerators and Neutrino Factories

—Text should not exceed 1200 characters.—

Authors

Primary/submitting author: O.M. Hansen Presenter/speaker: I. Eftymiopoulos Co-authors: A. Blondel and I. Eftymiopoulos