Multiple Scattering Measurements in MICE

The international Muon Ionization Cooling Experiment (MICE)

MICE is the **first experimental test of ionization cooling**, under construction at the Rutherford Appleton Laboratory (UK).

Three 35 cm long liquid hydrogen absorbers reduce the total momentum by 11 MeV/c each – providing **cooling**.Cooling is the reduction of beam volume (emittance) in phase space.

Energy loss → Multiple Scattering → Re-accelerate!

Re-accelerate using **201 MHz RF** cavities at high gradients.

Step IV – starting in 2013

Scintillating fibre trackers measure the beam emittance before and after the cooling channel to an accuracy of 0.1%.

Can **study cooling** in various materials in G4MICE simulations, based on GEANT4.

Helical muon tracks through the MICE solenoidal magnetic fields

Predicted values using G4MICE differ from those using PDG multiple scattering formula.

Multiple Scattering Measurements

Can directly measure multiple scattering using the scintillating-fibre trackers in Step IV.

Muon hits recorded in each tracker. Apply a **Gaussian smear** to coordinates represent Tracker resolution.

Track particles from each tracker to downstream edge of absorber, in an empty channel, using G4MICE simulation code.

- → Calc. angle between the beams.
- → Angular offset gives the multiple scattering angle.
- → Unfold the data to removing smearing effects.

$$\cos \theta_{rms}^{space} = \frac{\vec{p}.\vec{q}}{|p||q|}$$

Step IV measurements
can address the
disagreement between
G4MICE Monte Carlo &
PDG theory

The John Adams Institute, Oxford University.

On behalf of the MICE Collaboration. http://mice.iit.edu/